Centro de Transición Energética

Qué es el

Centro de Transición Energética

El Centro de Transición Energética (CTE) se creó en 2023 con el objetivo general de realizar investigación científica, tecnológica e interdisciplinaria para apoyar la transición energética, conformando una unidad académica reconocida por su excelencia en el área de investigación y creación, mediante la organización y fortalecimiento de las competencias de sus académicos e integración de profesionales de otras facultades a las líneas de investigación propuestas, las que se alinearán de acuerdo con la política institucional.

Objetivos específicos del centro:

  • Vincular a la USS con el sector público-privado en temas como electromovilidad, baterías de litio, energías renovables no convencionales y tecnologías para apoyar la transición energética.
  • Realizar una vigilancia tecnológica de los desarrollos relevantes tanto en la industria como en los centros de investigación en áreas relacionadas con la electromovilidad y las energías renovables.
  • Vincular a la USS con otros centros nacionales e internacionales.

¿Qué hace el CTE?

La investigación del Centro se enfoca en el desarrollo de la electrónica de potencia y los modelos de control predictivo.

Actualmente, la electrónica de potencia es una tecnología crítica para el desarrollo sostenible de la sociedad. Dos tendencias principales respaldan esta transición: el aumento de las capacidades de generación de energía renovable y la electrificación de las aplicaciones de uso final.

Además, la electrónica de potencia permite mejorar el procesamiento y distribución de potencia, impactando a los sistemas de todos los tamaños, desde baterías hasta sistemas de generación y distribución.

El control predictivo aprovecha la capacidad de cálculo de los microprocesadores actuales para mejorar la transformación de energía. Esta incluye el desarrollo de algoritmos de inteligencia artificial y métodos de optimización de sistemas de control. Sus aplicaciones abarcan las energías renovables, tanto fotovoltaica como eólica, ayudando a mantener la estabilidad de la frecuencia en sistemas eléctricos, por ejemplo. Además, es crucial en la electromovilidad, donde se utiliza para diseñar controladores en vehículos eléctricos.

Nuestro equipo

place {{ card.sede }}

Proyectos CTE

Proyectos Vigentes:

  • Fondecyt Regular 1210208, Investigador Responsable José Rodríguez.
  • Fondecyt Regular 1221293, Co Investigador José Rodríguez
  • Fondecyt Iniciación 11230430, Investigador Responsable Mokhtar Aly.
  • Proyecto VIU 23PO127, Investigador Responsable Felipe Ruiz

Proyectos postulados 2024:

  • Fondecyt Iniciación: 3 proyectos.
  • Fondecyt Postdoctoral: 2 proyectos.
  • Fondecyt Regular: 2 proyectos.
Alcances y proyectos que desarrollarán

Áreas de investigación

Mokhtar Aly

Su investigación apunta a la electrónica de potencia, sistemas y control de energías renovables, la transición energética, eficiencia energética y la confiabilidad de los sistemas de baterías. A esto se suma la estabilidad de las microrredes eléctricas; aplicaciones de la inteligencia artificial en el sector energético; hidrogeno verde, electromovilidad y celdas de combustible.

Felipe Ruiz Allende

Su trabajo se centra en la conversión de energía con el objetivo de aumentar la modularidad, la densidad de potencia y la eficiencia. En 2023 se incorporó al Centro de Transición Energética de la USS, donde actualmente es investigador. Durante su doctorado, concibió la idea de los transformadores modulares de estado sólido como tecnología habilitadora para resolver la mayoría de los problemas de las redes de distribución y para el desarrollo de redes inteligentes.
{{ current }} · {{ length }}
Conoce las

Publicaciones destacadas

José Rodríguez
  1. Saci, Abdelmoumen, Mohamed Nadour, Lakhmissi Cherroun, Ahmed Hafaifa, Abdellah Kouzou, Jose Rodriguez, and Mohamed Abdelrahem. 2024. “Condition Monitoring Using Digital Fault-Detection Approach for Pitch System in Wind Turbines” Energies 17, no. 16: 4016. https://doi.org/10.3390/en17164016
  2. Mohammedi, Ridha Djamel, Abdellah Kouzou, Mustafa Mosbah, Aissa Souli, Jose Rodriguez, and Mohamed Abdelrahem. 2024. “Allocation and Sizing of DSTATCOM with Renewable Energy Systems and Load Uncertainty Using Enhanced Gray Wolf Optimization” Applied Sciences 14, no. 2: 556. https://doi.org/10.3390/app14020556
  3. Ahmad, Mohd Faraz, M. Saad Bin Arif, Uvais Mustafa, Mohamed Abdelrahem, Jose Rodriguez, and Shahrin Md. Ayob. 2024. “An Improved Single-Phase Multiple DC Source Inverter Topology for Distributed Energy System Applications” Energies 17, no. 9: 2146. https://doi.org/10.3390/en17092146.
  4. Tamersit, Khalil, Abdellah Kouzou, José Rodriguez, and Mohamed Abdelrahem. 2024. “Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics” Nanomaterials 14, no. 11: 962. https://doi.org/10.3390/nano14110962
  5. J. Sun, L. Qiu, X. Liu, J. Ma, J. Rodríguez and Y. Fang, “Model-Free Moving-Discretized-Control-Set Predictive Control for Three-Phase Dual-Active-Bridge Converters,” in IEEE Transactions on Power Electronics, vol. 39, no. 8, pp. 9160-9173, Aug. 2024, doi: 10.1109/TPEL.2023.3309137.
  6. M. A. Hosseinzadeh, M. Sarebanzadeh, C. F. Garcia, E. Babaei, J. Rodriguez and R. Kennel, “A New Generalized Multisource Inverter for Electric Vehicles Controlled by Model Predictive,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 9, pp. 10184-10197, Sept. 2024, doi: 10.1109/TIE.2023.3329248.
  7. Y. Wang, Yong Yang, Yang Xiao, Mingdi Fan, Rong Chen, Jiefeng Hu, Xingwu Yang, Chaoqun Xiang, Hui Yang, and Jose Rodriguez., “A Novel Extended Sliding-Mode Predictive Control With Dynamic Optimization and Virtual Voltage Vectors,” in IEEE Transactions on Power Electronics, vol. 39, no. 9, pp. 10976-10988, Sept. 2024, doi: 10.1109/TPEL.2024.3411565.
  8. X. Liu, Jin Wang, Xiaonan Gao, Wei Tian, Libing Zhou, Jose Rodriguez, and Ralph Kennel., “Continuous Control Set Predictive Speed Control of SPMSM Drives With Stability Improvement,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 4, pp. 3750-3764, Aug. 2024, doi: 10.1109/JESTPE.2024.3409385.
  9. C. Zheng, M. Xie, X. Dong, Z. Gong, T. Dragičević and J. Rodriguez, “Modulated Model Predictive Current Control With Active Damping for LC-Filtered PMSM Drives,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 4, pp. 3848-3861, Aug. 2024, doi: 10.1109/JESTPE.2024.3408070.
  10. Q. Li, Y. Lv, R. Kennel and J. Rodriguez, “Semiclosed Loop Based on Predictive Current Control for SPMSM Drives During Servo Stamping,” in IEEE Transactions on Power Electronics, vol. 39, no. 9, pp. 11430-11440, Sept. 2024, doi: 10.1109/TPEL.2024.3405413.
  11. B. Long, W. Yang, J. Hu, J. Rodriguez and K. T. Chong, “Low-Complexity and Less-Conservativeness Ostrowski Stability Criterion for Parallel Fractional Grid-Connected Converters Under Unbalanced Grid,” in IEEE Transactions on Power Electronics, vol. 39, no. 9, pp. 10820-10833, Sept. 2024, doi: 10.1109/TPEL.2024.3404356.
  12. X. Wang, J. Hu, C. Garcia, J. Rodriguez and B. Long, “Robust Sequential Model-Free Predictive Control of a Three-Level T-Type Shunt Active Power Filter,” in IEEE Transactions on Power Electronics, vol. 39, no. 8, pp. 9505-9517, Aug. 2024, doi: 10.1109/TPEL.2024.3403831.
  13. B. Long, Z. He, C. Garcia, J. Rodríguez and K. T. Chong, “A Model-Data Hybrid Driven Diagnosis Method for Open-Switch Faults in Three-Phase T-Type Grid-Connected Converters,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 4, pp. 3925-3935, Aug. 2024, doi: 10.1109/JESTPE.2024.3402751.
  14. B. Long, F. Lei, J. Rodriguez and K. T. Chong, “Power Quality Enhancement of Unbalanced Vehicle Microgrids by T-Type Converters Using Dual-Flexible Model Predictive Control,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 4, pp. 4082-4093, Aug. 2024, doi: 10.1109/JESTPE.2024.3401751.
  15. Y. Wei, D. Ke, X. Yu, F. Wang and J. Rodríguez, “Adaptive Inertia Observer-Based Model-Free Predictive Current Control for PMSM Driving System of Electric Vehicles,” in IEEE Transactions on Industry Applications, vol. 60, no. 4, pp. 6252-6262, July-Aug. 2024, doi: 10.1109/TIA.2024.3396123.
  16. Ma Chenwei, Wensheng Song, Jiayao Li, Hao Yue, Jose Rodriguez, Cristian Garcia, and Frederik De Belie. “A Direct Optimal Input Determination Data-Based Predictive Current Control for PMSM Drives Without System Identification,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 3, pp. 2707-2717, June 2024, doi: 10.1109/JESTPE.2024.3378523.
  17. Schuetz, Dimas A., Fernanda de M. Carnielutti, Mokhtar Aly, Margarita Norambuena, José Rodriguez, and Humberto Pinheiro. “Fast FCS-MPC for neutral-point clamped converters with switching constraints.” Control Engineering Practice 150 (2024): 106006. https://doi.org/10.1016/j.conengprac.2024.106006
  18. Amrani, Zoubida, Abdelkader Beladel, Abdellah Kouzou, Jose Rodriguez, and Mohamed Abdelrahem. 2024. “Four-Wire Three-Level NPC Shunt Active Power Filter Using Model Predictive Control Based on the Grid-Tied PV System for Power Quality Enhancement” Energies 17, no. 15: 3822. https://doi.org/10.3390/en17153822
  19. Bo, Long, ZhiHao Chen, XingYu Li, Rodriguez Jose, and To Chong Kil. “Low Voltage Ride Through Enhancement of a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System in An Islanded Microgrid: A Dynamic Matrix Controlled Virtual DC Machine.” Renewable Energy (2024): 120680. https://doi.org/10.1016/j.renene.2024.120680.
  20. Ahmad, Mohd Faraz, M. Saad Bin Arif, Mohamed Abdelrahem, and Jose Rodriguez. “A high gain and compact size asymmetrical 17‐level inverter for medium‐and high‐power applications.” International Journal of Circuit Theory and Applications (2023). https://doi.org/10.1002/cta.3906
  21. Lotfollahzadegan, Saeed, S. Alireza Davari, Mahdi S. Mousavi, Alireza Chegeni, Luca Tarisciotti, and Jose Rodriguez. “Hexagonal zoning deadbeat model predictive control of induction motor.” IET Electric Power Applications (2024). https://doi.org/10.1049/elp2.12415.
  22. Y. Zhu, H. Wen, Y. Yang, J. Mao, P. Wang, W. Huang, J. Rodriguez, “Decoupled Continuous Control Set Model Predictive Control for T-Type Three-Phase Four-Leg Three-Level Inverters Driving Constant Power Loads,” in IEEE Transactions on Power Electronics, vol. 39, no. 6, pp. 7002-7015, June 2024, doi: 10.1109/TPEL.2024.3379521.
  23. T. Cao, Y. Yu, J. Zhang, J. Rodriguez, K. T. Chong and B. Long, “Pseudo-Three-Layer Sequential Model-Free Predictive Control With Neural-Network Observer for Parallel T-Type Three-Level Converters,” in IEEE Transactions on Power Electronics, vol. 39, no. 7, pp. 7848-7862, July 2024, doi: 10.1109/TPEL.2024.3379419.
  24. Q. Li, H. Li, J. Gao, Y. Xu, J. Rodriguez and R. Kennel, “Nonlinear-Disturbance-Observer-Based Model-Predictive Control for Servo Press Drive,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 8, pp. 8448-8458, Aug. 2024, doi: 10.1109/TIE.2023.3331140.
  25. L. He, F. Wang, J. Rodríguez and M. L. Heldwein, “A Robust Predefined-Time Sliding Mode Predictive Control for SPMSM Speed Regulation Systems Using an Ultralocal Model,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 8, pp. 8406-8415, Aug. 2024, doi: 10.1109/TIE.2023.3319745.
  26. Y. Wei, H. Young, D. Ke, F. Wang and J. Rodríguez, “Model-Free Predictive Current Control Using Extended Affine Ultralocal for PMSM Drives,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 7, pp. 6719-6729, July 2024, doi: 10.1109/TIE.2023.3314914.
  27. X. Liu, L. Qiu, Y. Fang, K. Wang, Y. Li and J. Rodríguez, “Predictive Control of Voltage Source Inverter: An Online Reinforcement Learning Solution,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 7, pp. 6591-6600, July 2024, doi: 10.1109/TIE.2023.3303626.
  28. F. Wang, Y. Wei, H. Young, D. Ke, D. Huang and J. Rodríguez, “Continuous-Control-Set Model-Free Predictive Control Using Time-Series Subspace for PMSM Drives,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 7, pp. 6656-6666, July 2024, doi: 10.1109/TIE.2023.3310017.
  29. X. Liu, L. Qiu, Y. Fang, K. Wang, Y. Li and J. Rodríguez, “Finite Control-Set Learning Predictive Control for Power Converters,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 7, pp. 8190-8196, July 2024, doi: 10.1109/TIE.2023.3303646.
  30. Wang, Kui, Mingzhe Wu, Zedong Zheng, Josep Pou, Jose Rodríguez, Yun Wei Li, and Yongdong Li, “A Generalized Derivation Method of Tree-Type Active Neutral-Point-Clamped Multilevel Topologies,” in IEEE Transactions on Power Electronics, vol. 39, no. 6, pp. 7118-7129, June 2024, doi: 10.1109/TPEL.2024.3365571.
  31. Tamersit, Khalil, Abdellah Kouzou, José Rodriguez, and Mohamed Abdelrahem. 2024. “Electrostatically Doped Junctionless Graphene Nanoribbon Tunnel Field-Effect Transistor for High-Performance Gas Sensing Applications: Leveraging Doping Gates for Multi-Gas Detection” Nanomaterials 14, no. 2: 220. https://doi.org/10.3390/nano14020220
  32. Ibaceta, Efrain, Matias Diaz, Saravanakumar Rajendran, Yeiner Arias, Roberto Cárdenas, and Jose Rodriguez. 2024. “Experimental Assessment of a Decentralized Control Strategy for a Back-to-Back Modular Multilevel Converter Operating in Low-Frequency AC Transmission” Processes 12, no. 1: 155. https://doi.org/10.3390/pr12010155
  33. Herrera, Felipe, Andrés Mora, Roberto Cárdenas, Matías Díaz, José Rodríguez, and Marco Rivera. 2024. “An Optimal Switching Sequence Model Predictive Control Scheme for the 3L-NPC Converter with Output LC Filter” Processes 12, no. 2: 348. https://doi.org/10.3390/pr12020348.
  34. M. S. Mubarok, T. -H. Liu, S. A. Davari and J. Rodriguez, “Constrained Predictive Controllers for High-Performance Sensorless IPMSM Drive Systems With Full-Range Speed Operations,” in IEEE Transactions on Power Electronics, vol. 39, no. 4, pp. 4612-4623, April 2024, doi: 10.1109/TPEL.2024.3352021.
  35. Y. Wei, H. Young, D. Ke, D. Huang, F. Wang and J. Rodríguez, “Adaptive Ultralocalized Time-Series for Improved Model-Free Predictive Current Control on PMSM Drives,” in IEEE Transactions on Power Electronics, vol. 39, no. 5, pp. 5155-5165, May 2024, doi: 10.1109/TPEL.2024.3357854.
  36. Haoran Wang, Mingdi Fan, Yang Xiao, Yong Yang, Zhiyong Dai, Xinan Zhang, Jose Rodriguez., “Four Consecutive Samples Based Sensorless Control for PMSM Drives,” in IEEE Transactions on Transportation Electrification, vol. 10, no. 1, pp. 2082-2094, March 2024, doi: 10.1109/TTE.2023.3284467.
  37. X. Zhang, C. Zhang, Z. Wang and J. Rodríguez, “Motor-Parameter-Free Model Predictive Current Control for PMSM Drives,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 6, pp. 5443-5452, June 2024, doi: 10.1109/TIE.2023.3292874.
  38. Xiaonan Gao, Wei Tian; Qifan Yang, Na Chai, Jose Rodriguez, Ralph Kennel, Marcelo Lobo Heldwein., “Model Predictive Control of a Modular Multilevel Converter Considering Control Input Constraints,” in IEEE Transactions on Power Electronics, vol. 39, no. 1, pp. 636-648, Jan. 2024, doi: 10.1109/TPEL.2023.3318320.
  39. J. Sun, Y. Yang, R. Chen, X. Zhang, C. S. Lim and J. Rodriguez, “An Efficient Multi-Vector-Based Model Predictive Current Control for PMSM Drive,” in CPSS Transactions on Power Electronics and Applications, vol. 9, no. 1, pp. 79-89, March 2024, doi: 10.24295/CPSSTPEA.2023.00044.
  40. B. Long, Z. Chen, C. Hu, J. Rodriguez, J. M. Guerrero and X. Zang, “A Reduced Common-Mode Voltage Control Scheme for Three-Level H10 Converter Considering Dead-Time Effect,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 1, pp. 695-706, Feb. 2024, doi: 10.1109/JESTPE.2023.3332368.
  41. D. Prajapati, A. Dekka, D. Ronanki and J. Rodriguez, “Low-Complexity Heun’s Method-Based FCS-MPC With Reduced Common-Mode Voltage for a Five-Level Inverter,” in IEEE Transactions on Power Electronics, vol. 39, no. 3, pp. 3329-3338, March 2024, doi: 10.1109/TPEL.2023.3342756.
  42. Renji Mo; Yong Yang, Rong Chen, Weimin Wu, Jiefeng Hu, Huiqing Wen, Yiwang Wang, Gang Fang, Jose Rodriguez, “Low-Complexity Virtual-Vector-Based FCS-MPC With Unaffected Neutral-Point Voltage for Three-Phase T-Type Inverters,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 2, pp. 1683-1693, April 2024, doi: 10.1109/JESTPE.2023.3348289.
  43. B. Long, Z. Chen, C. Hu, Y. Yu, J. Rodríguez and J. M. Guerrero, “A Nonclamped H10 Topology to Achieve Leakage Current Reduction for Transformerless Grid-Connected Converter,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 2, pp. 1847-1858, April 2024, doi: 10.1109/JESTPE.2024.3350579.
  44. Benbouya Basma, Hocine Cheghib, Daniela Chrenko, Maria Teresa Delgado, Yanis Hamoudi, Jose Rodriguez, and Mohamed Abdelrahem. 2024. “Sliding Mode Control of an Electric Vehicle Driven by a New Powertrain Technology Based on a Dual-Star Induction Machine” World Electric Vehicle Journal 15, no. 4: 155. https://doi.org/10.3390/wevj15040155
  45. Wang Y, Yang Y, Chen S, Chen R, Hu J, Wu W, Wang Y, Yang H, Zhou L, Rodriguez J, “An Improved Model Predictive Voltage Control With Reduced Computational Burden for T-Type Three-Phase Three-Level Inverters,” in IEEE Transactions on Power Electronics, vol. 39, no. 2, pp. 2115-2127, Feb. 2024, doi: 10.1109/TPEL.2023.3333357.
  46. Bo Long, Wandi Yang, Shihan Zhu, Cao Tianxu, Josep M. Guerrero, José Rodríguez, Xian Zang, “Power-frequency admittance model of multi-VSGs grid-connected system considering power coupling,” in International Journal of Electrical Power & Energy Systems, Volume 155, Part A,2024,109513, doi.org/10.1016/j.ijepes.2023.109513.
  47. D. Prajapati, A. Dekka, D. Ronanki and J. Rodriguez, “High-Performance Sequential Model Predictive Control of a Four-Level Inverter for Electric Transportation Applications,” in IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 5, no. 1, pp. 253-262, Jan. 2024, doi: 10.1109/JESTIE.2023.3314342.
  48. Xie H, Novak M, Wang F, Dragicevic T, Rodríguez J, Blaabjerg F, Kennel R, Heldwein ML, “Cooperative Decision-Making Approach for Multiobjective Finite Control Set Model Predictive Control Without Weighting Parameters,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 5, pp. 4495-4506, May 2024, doi: 10.1109/TIE.2023.3283689.
  49. O. Babayomi, Z. Zhang, Z. Li, M. L. Heldwein and J. Rodriguez, “Robust Predictive Control of Grid-Connected Converters: Sensor Noise Suppression With Parallel-Cascade Extended State Observer,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 4, pp. 3728-3740, April 2024, doi: 10.1109/TIE.2023.3279565.
  50. W. Wu, L. Qiu, X. Liu, J. Ma, J. Rodriguez and Y. Fang, “Dynamic-Linearization-Based Predictive Control of a Voltage-Source Inverter,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 4, pp. 3275-3284, April 2024, doi: 10.1109/TIE.2023.3274861.
  51. Hu J, Shan Y, Yang Y, Parisio A, Li Y, Amjady N, Islam S, Cheng KW, Guerrero JM, Rodríguez J, “Economic Model Predictive Control for Microgrid Optimization: A Review,” in IEEE Transactions on Smart Grid, vol. 15, no. 1, pp. 472-484, Jan. 2024, doi: 10.1109/TSG.2023.3266253.
  52. Y. Wei, D. Ke, H. Qi, F. Wang and J. Rodríguez, “Multistep Predictive Current Control for Electrical Drives With Adaptive Horizons,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 1, pp. 250-260, Jan. 2024, doi: 10.1109/TIE.2023.3243291.
  53. Jin, Tao, Huiqing Song, P. G. Ipoum-Ngome, D. L. Mon-Nzongo, Jinquan Tang, Minlong Zhu, and Jose Rodriguez., “Low Complexity Model Predictive Flux Control Based on Discrete Space Vector Modulation and Optimal Switching Sequence for Induction Motors,” in IEEE Transactions on Industrial Electronics, vol. 71, no. 1, pp. 305-315, Jan. 2024, doi: 10.1109/TIE.2023.3241412.
Mokhtar Aly
  1. Mokhtar Aly, Fernanda Carnielutti, Felipe Grigoletto, Kelwin Silveira, Margarita Norambuena, Samir Kouro, José Rodriguez “Predictive Control of Common-Ground Five-Level PV Inverter without Weighting Factors and Reduced Computational Burden,” in IEEE Journal of Emerging and Selected Topics in Power Electronics (ISSN 2168-6785), Vol. PP, No. 99, pp. 1-1, Aug. 2023, doi: 10.1109/JESTPE.2023.3301540
  2. Mokhtar Aly, Emad M. Ahmed, and Masahito Shoyama “Modulation Method for Improving Reliability of Multilevel T-type Inverter in PV Systems,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 8, no. 2, pp. 1298–1309, Jun. 2020, doi: 10.1109/JESTPE.2019.2898105
  3. Mokhtar Aly, Emad M. Ahmed, and Masahito Shoyama “A New Single Phase Five-Level Inverter Topology for Single and Multiple Switches Fault Tolerance,” in IEEE Transactions on Power Electronics, Vol. 33, no. 11, pp. 9198–9208, Nov. 2018, doi: 10.1109/TPEL.2018.2792146
  4. Mokhtar Aly, Emad M. Ahmed, and Masahito Shoyama “Thermal Stresses Relief Carrier-Based PWM Strategy for Single phase Multilevel Inverters,” in IEEE Transactions on Power Electronics, Vol. 32, no. 12, pp. 9376–9388, Dec. 2017, doi: 10.1109/TPEL.2017.2654490
  5. Mokhtar Aly, Emad M. Ahmed, and Masahito Shoyama “Thermal and Reliability Assessment for Wind Energy Systems with DSTATCOM Functionality in Resilient Microgrids,” in IEEE Transactions on Sustainable Energy, Vol. 8, no. 3, pp. 953-965, Jul. 2017, doi: 10.1109/TSTE.2016.2635200
  6. Hegazy Rezk, Mokhtar Aly, Mujahed Al-Dhaifallah, and Masahito Shoyama, “Design and Hardware Implementation of New Adaptive Fuzzy Logic-Based MPPT Control Method for Photovoltaic Applications,” in IEEE Access, Vol. 7, pp. 106427–106438, Aug. 2019, doi: 10.1109/ACCESS.2019.2932694
  7. Mokhtar Aly, Emad A Mohamed, Abdullah M Noman, Emad M Ahmed, Fayez FM El-Sousy, and Masayuki Watanabe “Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations,” in Mathematics MDPI (EISSN 2227-7390), Vol. 11, No. 9, pp. 2080(1-31), April. 2023, doi: 10.3390/math11092080
Felipe Ruiz Allende
  1. F. Ruiz, M. A. Perez, J. R. Espinosa, T. Gajowik, S. Stynski and M. Malinowski, “Surveying Solid-State Transformer Structures and Controls: Providing Highly Efficient and Controllable Power Flow in Distribution Grids,” in IEEE Industrial Electronics Magazine, vol. 14, no. 1, pp. 56-70, March 2020, doi: 10.1109/MIE.2019.2950436.
  2. Ruiz, F.; Pichardo, E.; Aly, M.; Vazquez, E.; Avalos, J.G.; Sánchez, G. A High-Performance Fractional Order Controller Based on Chaotic Manta-Ray Foraging and Artificial Ecosystem-Based Optimization Algorithms Applied to Dual Active Bridge Converter. Fractal Fract. 2024, 8, 332. https://doi.org/10.3390/fractalfract8060332
WhatsApp